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We study the probability distributions of interface roughness, sampled among successive equilibrium con-
figurations of a single-interface model used for the description of Barkhausen noise in disordered magnets, in
space dimensionalitiesd=2 and 3. The influence of a self-regulatingsdemagnetizationd mechanism is investi-
gated, and evidence is given to show that it is irrelevant, which implies that the model belongs to the
Edwards-Wilkinson universality class. We attempt to fit our data to the class of roughness distributions asso-
ciated to 1/fa noise. Periodic, free, “window,” and mixed boundary conditions are examined, with rather
distinct results as regards quality of fits to 1/fa distributions.
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I. INTRODUCTION

This paper deals with fluctuation properties of driven in-
terfaces in random media. The subject has been the focus of
much current interestsfor reviews see, e.g., Refs.f1,2gd. Spe-
cial attention has been given to features at and close to the
depinning transition, where a threshold is reached for the
external driving force, above which the interface starts mov-
ing at a finite speed. In analogy with the well-established
scaling theory of equilibrium critical phenomena, one usu-
ally searches for the underlying universality classes and their
respective critical indices, wherever such concepts are appli-
cable. One example is the roughness exponentz which char-
acterizes the disorder-averaged mean-square deviations of
the interface about its mean height, at depinningf1g.

It has been shown very recently that the probability dis-
tribution functionssPDFsd of critical fluctuations in seem-
ingly disparatesboth equilibrium and out-of-equilibriumd
systems display a remarkable degree of universalityf3–6g. In
the context of depinning phenomena, this indicates that one
may gain additional insight into the physical mechanisms
involved, by investigating the full roughness PDFs instead of
concentrating on their lowest-order moments. Here we inves-
tigate the PDFs of interface roughness for a specific single-
interface model which has been used in the description of
Barkhausen noisef7–10g, and is related to the quenched
Edwards-Wilkinson universality classf11–14g. A preliminary
investigation of this problem was reported in Ref.f10g.

Barkhausen “noise”sBNd is an intermittent phenomenon
which reflects the dynamics of domain-wall motion in the
central part of the hysteresis cycle in ferromagnetic materials
ssee Ref.f15g for an up-to-date reviewd. A sample placed in
a time-varying external magnetic field undergoes sudden mi-
croscopic realignments of groups of magnetic moments, par-
allel to the field. For suitably slow driving rates, such
domain-wall motions, or “avalanches,” are well separated
and can be easily individualized. The accompanying changes
of magnetic flux are usually detected by wrapping a coil
around the sample and measuring the voltage pulses thus

induced across the coil. The integral of the voltage amplitude
of a given pulse over time is proportional to the change in
sample magnetization, thus giving a measure of the number
of spins overturned in that particular event, or “avalanche
size.” Modern experimental techniques allow direct observa-
tion, in ultrathin films, of the domain-wall motion character-
istic of BN, via the magneto-optical Kerr effectf16,17g.

It has been proposed that BN is an illustration of “self-
organized criticality” f7,18–20g, in the sense that a broad
distribution of scalessi.e., avalanche sizesd is found within a
wide range of variation of the external parameter, namely the
applied magnetic field, without any fine-tuning. Accordingly,
the interface model studied here incorporates a self-
regulating mechanism in the form of a demagnetizing term
ssee belowd. In the context of interface depinning models, the
question arises of whether this is a relevant perturbation, i.e.,
whether self-organized depinning phenomena belong to the
same universality class as their counterparts which do not
incorporate such mechanisms.

In what follows, we first recall pertinent aspects of the
interface model used here, and of our calculational methods,
as well as the connections between roughness distributions
and 1/fa noise. Next, we exhibit numerical data for rough-
ness distributions, generated by our simulations. We examine
the influence of the self-regulating mechanism, and investi-
gate the effect of assorted boundary conditions, both on our
results and on the class of 1/fa noise distributions to which
they are compared. Finally, we discuss our findings with re-
gard to the relevant universality classes.

II. MODEL AND CALCULATIONAL METHOD

The single-interface model used here was introduced in
Ref. f7g for the description of BN. We consider the adiabatic
limit of a very slow driving rate, thus avalanches are consid-
ered to be instantaneoussoccurring at a fixed value of the
external fieldd.

Simulations are performed on anLx3Ly3` geometry,
with the interface motion set along the infinite direction. The
interface at timet is described by its heighthi ;hsx,y,td,
wheresx,yd is the projection of sitei over the cross section.
No overhangs are allowed, sohsx,y,td is single-valued. We*Electronic address: sldq@if.ufrj.br
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consider mainlyLy=1 ssystem dimensionalityd=2, interface
dimensionalityd8=d−1=1d, and Lx=Ly sd=3,d8=2d. For
reasons to be explained below, we will use the following sets
of boundary conditions: periodicsPBCd, so every site has
two neighbors ford=2 and four ford=3; freesFBCd, mean-
ing that the interface is horizontal at the edgess]h/]n̂=0,
wheren̂= x̂ or ŷ is the normal in the cross-section planed; and
mixed sMBCd, i.e., periodic alongx and free alongy. These
latter were employed in Ref.f10g to reproduce the physical
picture of films with varying thickness. We also considered
an alternative implementation of FBC, namely window
boundary conditionssWBCd, to be described in Sec. IV C.

Each elementi of the interface experiences a force given
by

f i = usx,y,hid + ko
j

fh, jsid
− hig + He, s1d

where

He = H − hM . s2d

The first term on the right-hand side of Eq.s1d is chosen

randomly, for each lattice siter i
W ;sx,y,hid, from a Gaussian

distribution of zero mean and standard deviationR, and rep-
resents quenched disorder. Large negative values ofu lead to
local interface pinning. The second termswhere the force
constantk is taken as the unit forfd corresponds to elastic
nearest-neighbor couplingssurface tensiond; , jsid is the po-
sition of the j th nearest neighbor of sitei. For MBC, sites at
y=1 and y=Ly have only three neighbors on thexy plane
sexcept in the monolayer caseLy=1 which is the two-
dimensional limit, where all interface sites have two neigh-
borsd. The last term is the effective driving force, resulting
from the applied uniform external fieldH and a demagnetiz-
ing field which is taken to be proportional toM
=s1/LxLydoi=1

LxLyhi, the magnetizationsper sited of the previ-
ously flipped spins for a lattice of transverse areaLxLy. For
actual magnetic samples, the demagnetizing field is not nec-
essarily uniform along the sample; even when it isse.g., for
a uniformly magnetized ellipsoidd, h would depend on the
system’s aspect ratiof21g. Therefore, our approach amounts
to a simplification, which is nevertheless expected to capture
the essential aspects of the problemf9g. Here we useR
=5.0,k=1, andh=0.05, values for which fairly broad distri-
butions of avalanche sizes and roughness are obtained
f8–10g. We also consider the effects of takingh;0, i.e., the
non-self-organizing limit.

We start the simulation with a flat wall. All spins above it
are unflipped. The forcef i is calculated for each unflipped
site along the interface, and each spin at a site withf i ù0
flips, causing the interface to move up one step. The magne-
tization is updated, and this process continues, with as many
sweeps of the whole lattice as necessary, untilf i ,0 for all
sites, when the interface comes to a halt. The external field is
then increased by the minimum amount needed to bring the
most weakly pinned element to motion. The avalanche size
corresponds to the number of spins flipped between two con-
secutive interface stops.

On account of the demagnetization term, the effective
field He at first rises linearly with the applied fieldH, and
then, upon further increase inH, saturatessapart from small
fluctuationsd at a value rather close to the critical external
field for the corresponding modelwithout demagnetization
f7,8g. The saturationHe depends onR, k, andh snot notice-
ably on Lx,Lyd f8,10g, and can be found from small-lattice
simulations. It takes 102−103 avalanches for a steady-state
regime to be reached, as measured by the stabilization ofHe
againstH.

III. ROUGHNESS DISTRIBUTIONS AND 1/ fa NOISE

We have generated histograms of occurrence of interface
roughness, to be examined in the context of universal fluc-
tuation distributionsf3–6g. We have used only steady-state
data, i.e., after the stabilization ofHe of Eq. s2d against ex-
ternal field H. This is the regime in which the system is
self-regulated at the edge of criticalityf7,8g. As the model is
supposed to mimic the data acquisition regime for BN, dur-
ing which the external field grows linearly in timef7–10,15g,
the value ofH is a measure of “time.”

At the end of each avalanche, we measured the roughness
w2 of the instantaneous interface configuration at timet, as
the sposition-averagedd square width of the interface height
f6,22g,

w2std = sLxLyd−1o
i=1

LxLy

fhistd − hstdg2, s3d

wherehstd is the average interface height att. As the ava-
lanches progress, one gets a sampling of successive equilib-
rium configurations; the ensemble of such configurations
yields a distribution of the relative frequency of occurrence
of w2. Here we usually considered ensembles of 53107

eventssone and a half orders of magnitude larger than in Ref.
f10gd, so we ended up with rather clean distributions. This
was essential, in order to resolve ambiguities left over from
our previous resultsf10g.

The width distributions for correlated systems at critical-
ity may be put into a scaling formf5,6,22,23g,

Fszd = kw2lPsw2d, z; w2/kw2l, s4d

where angular brackets stand for averages over the ensemble
of successive interface configurations, and the size depen-
dence appears only through the average widthkw2l. By run-
ning simulations withOs106d events, and 400øLxø1200
for d=2sLy=1d, 30øLx=Lyø80 for d=3 f10g, we ascer-
tained that Eq.s4d indeed holds, i.e., finite-size effects are
not detectable in any significant way as far as the scaling
functionsFszd are concerned. The finite-size scaling of the
first moment gives the roughness exponentf1g,

kw2sLdl , L2z. s5d

In the context of critical fluctuation phenomena, it is
known that boundary conditions have a nontrivial effect on
scaling functions, as infinite-range critical correlations are
sensitive to the boundaries of the systemf5,6,22,24,25g. This
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is the motivation for use of the assorted boundary conditions
defined in Sec. II.

We have compared our results against the family of
roughness distributions for 1/fa noise, described in Refs.
f6,22g. As explained there, such distributions are derived un-
der the assumption that the Fourier modes into which the
interface is decomposed are uncorrelatedsgeneralized Gauss-
ian approximationf22gd, and with amplitudes such that the
frequency dependence of the power spectrum is purely 1/fa

f6g. This is the simplest starting point from which one may
expect nontrivial resultssthe trivial ones corresponding to
the case in which thereal-space fluctuationsare themselves
uncorrelated, implyinga=1/2d.

IV. RESULTS

A. Influence of the self-regulating term

We first investigated what could be learned about the rel-
evance of the self-regulating term, as regards roughness dis-
tributions. In order to do so, we determined the approximate
critical valueHe

c of the internal fieldHe of Eq. s2d, by starting
a simulation withhÞ0 and waiting forHe to stabilize. At
that point, we seth=0 and repeatedly variedH in the inter-
val sxHe

c,He
cd, x&1, according to the procedure delineated in

Sec. II. Though the interval of variation ofH did affect the
size distribution of avalanches, as this is what characterizes
the proximity of the depinning pointf7,8g, no change was
apparent in the roughness data when comparing results, e.g.,
for x=0.95 andx=0.9. For the simulations described in the
remainder of this subsection, we used the latter value. In all
cases studied, namely,d=2 PBC andd=3 with both MBC
and PBC, the influence of the demagnetization term on the
roughness PDFs is rather small, but systematic. This is illus-
trated in Fig. 1 ford=3 with MBC, the case for which the
deviations between thehÞ0 andh=0 sets of data are the
largest in magnitude. One sees that neglecting the demagne-
tizing term causes a small leftward shift of the scaling curve.
As we will see in Sec. IV B, the changes it causes to the fits
of our distributions to the analytical 1 /fa curves are of the
order of systematic imprecisions characteristic of the fitting
procedure. Nevertheless, it is instructive to seek the physical

origins of such an effect. This is done by direct inspection of
the unscaled PDFs. In Fig. 2 it is apparent that, forh=0, the
high-end tail ofPsw2d is slightly fatter than forhÞ0, at the
expense of a small amount of depletion around the most
probable value ofw2. Accordingly, the averagekw2l is higher
by .8% in the former case than in the lattersthe fractional
difference between averages is the same also ford=2 and
d=3 PBCd. Such a trend can be understood by recalling that
the h=0 data have been collected justbelow the depinning
transition, i.e., still within the regime where pinning forces
are dominant. Thus the interface mostly meanders about, in
order to comply with local energy minimization requests.
The complement of this picture is that, forH.Hc, the inter-
face moves with finite speed, more or less ignoring local
randomness configurations, and becoming smoother the far-
ther one is above the critical point. In short, for a given
lattice size the average interface roughness decreases mono-
tonically as the external fieldsdriving forced is increased
across its critical value.

The interpretation of the small differences betweenh=0
andhÞ0 distributions is then as follows:sid because of the
way in which data for the former were collected here, they
represent a system just belowHc, for which interface rough-
ness is slightly larger than at the critical point; andsii d the
closeness ofh=0 data to those forhÞ0, and the way in
which both sets of data differ, strongly suggest that behavior
at the critical point of theh=0 system is the same as that of
the hÞ0 sself-regulatedd case. We conclude that the self-
regulating term is irrelevant, as far as critical roughness dis-
tributions are concerned.

B. PBC, d=2 and 3

Analytical expressions for the 1/fa distributions with
PBC are either given in Ref.f6g sd=2d, or can be derived
straightforwardly from Refs.f6,22g sd=3d. In the latter case,
the use of exact identities for two-dimensional lattice sums
f26g speeds up calculations considerably. Estimates of the
exponentz of Eq. s5d, from power-law fits of simulational
data with Os106d events, and 400øLxø1200 for d=2, 30

FIG. 1. sad Scaled probability distributionsFszd in d=3 with
MBC, for z defined in Eq.s4d. Data forL=40, 53107 configura-
tions. Full line: demagnetization factorh=0.05; dashed line:h=0.
sbd Scaling function difference againstz.

FIG. 2. sad Probability distributionsPsw2d in d=3 with MBC.
Data for L=40, 53107 configurations. Full line: demagnetization
factor h=0.05; dashed line:h=0. sbd Probability distribution dif-
ference againstw2. Extent of horizontal axis corresponds to the
same interval ofz variation in Fig. 1.
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øLø80 for d=3, give zsd=2,PBCd=1.24s1d, zsd
=3,PBCd=0.71s1d f10g.

Consideration of the scaling properties of height-height
correlation functions and their Fourier transforms then sug-
gestsf22g, for the generalized Gaussian case of independent
Fourier modes, that

a = d8 + 2z sd8 = d − 1d, s6d

which would implya=3.48s2d sd=2d, 3.42s2d sd=3d.
Such predictions can be quantitatively checked by esti-

mating the values ofx2 per degree of freedomsxd.o.f.
2 d from

fits of our simulation results to the analytical distributions.
Since, even with 53107 samples, the simulational data even-
tually get frayed at the top end, given the long forward tails
characteristic of all systems studied here, our fits used only
data for whichFszdù10−3. This turned out not to be a dras-
tic restriction, as we were left typically with at least 100–200
points to fit in each case. Assuming the uncertainty in the
value ofa that best fits our data to be given by requiring that
xd.o.f.

2 stay within 150% of its minimum, we quote from the
data shown in Fig. 3:a=3.60s13d sd=2d; 3.52s6d sd=3d. The
agreement with the above predictions is satisfactory, though
slight discrepancies remain. A visual check of the goodness-
of-fit for each case is given in Figs. 4 and 5.

Fitting h=0 data to the closed-form distributions pro-
duces curves whose minima ofxd.o.f.

2 are essentially the same
as in Fig. 3, and slightly shifted rightwards. Using the same
criteria as above for the estimation of error bars, we have, for
h=0, a=3.64s16d sd=2d; 3.59s5d sd=3d.

Detailed discussion, and pertinent comparisons with data
from Ref. f22g, will be deferred to Sec. V.

C. FBC and WBC, d=2 and 3

We have generated roughness data in bothd=2 and 3 with
FBC. Our initial implementation of FBC, used also in Ref.
f10g, aims at a literal reproduction of the constraint that the
interface must be horizontal at the edges. Thus, e.g., ford
=2, “ghost” sites are added atx=0, x=Lx+1, whose heights
are always adjusted to be, respectively,hs0,td=hs1,td, hsLx

+1,td=hsLx,td. This way, the edge sites atx=1 andLx expe-
rience no elastic pullfsee the second term on the right-hand

side of Eq. s1dg from their ghost neighbors outside the
sample.

Similarly to the PBC cases, estimates of the exponentz of
Eq. s5d were extracted from power-law fits of simulational
data with Os106d events, and 400øLxø1000 for d=2, 30
øLø80 for d=3. The results arezsd=2,FBCd=1.28s2d,
zsd=3,FBCd=0.89s1d. While the former value might be
construed as not inconsistent with PBC and FBC giving the
same universality class ford=2, the same picture cannot
hold for d=3. Though it is knownf5,6,22,24,25g that bound-
ary conditions do have significant influence onscaling func-
tions of critical systems, they are not generally expected to
change the values of criticalexponents.

In order to discuss the roughness PDFs, we first recall the
effect of FBC on 1/fa distributions. The generating function
Gssd=edw2Psw2de−sw2 has the general form for PBCf6,22g,

Gpssd = p
nÞ0

S1 +
s

naD−1/2

, s7d

wheren is a lattice vector ind−1 dimensions with integer
coordinates. Because alln are counted, the square root dis-
appears due to thesat leastd twofold degeneracy. Requiring

FIG. 3. x2 per degree of freedomsxd.o.f.
2 d for fits of simulation

data with PBC to analytical forms of 1/fa distributions, againsta.
Triangles:d=2,Lx=400; squares,d=3,L=40.

FIG. 4. Scaled probability distributionFszd in d=2 sPBCd, for z
defined in Eq.s4d, from 53107 configurations. Squares: simulation
data sL=400d. Full line is roughness distribution for 1/fa noise
given in Ref.f6g, with a=3.60.

FIG. 5. Scaled probability distributionFszd in d=3 with PBC,
for z defined in Eq.s4d, from 53107 configurations. Squares: simu-
lation data sL=40d. Full line is roughness distribution for 1/fa

noise, witha=3.52.
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that the interface be horizontal at the edges implies that the
Fourier representation ofhstd includes only cosines. The cor-
respondingGfssd has the degeneracy of its singularities cut
in half, compared to PBC.

In d=2, this means that the single poles found for PBC
turn into square-root singularities. Evaluation ofPsw2d, as
the inverse Laplace transform ofGfssd, thus necessitates a
direct approach, since the residue theorem is inapplicable.
This has been accomplished in Ref.f27g, from which the
relevant expressions were extracted in order to attempt a
minimization ofxd.o.f.

2 againsta, similar to that of Sec. IV B.
With zsd=2,FBCd as above, one would expect a good fit for
a.3.5−3.6. Instead,xd.o.f.

2 has a minimum value.4
310−3 at a=2.96, and increases monotonically to reach
.4310−2 at a=3.5. This is clearly at variance with corre-
spondings results for the PBC case.

We then decided to generate data using window boundary
conditionssWBCd f6,27g, which are generally accepted as an
alternative way to simulate free edges. Accordingly, ind=2
we imposed global PBC on a system of overall lengthLx,
and measured the local roughness within each ofnw adjacent
windows of lengthLx/nw. With nw@1, it is plausible to as-
sume that the resulting PDFs are independent of the bound-
ary conditions established atx=0, Lx. In order to guarantee
statistical independence, one should in principle use widely
separated windows. However, the use of nonoverlapping, but
neighboring, windows instead appears to introduce no mea-
surable errors on the resulting PDFsf6g. We fixed nw=10,
and initially measuredz via Eq. s5d, from a sequence of
simulations withOs106d eventssi.e., individual avalanches,
thus the total number of roughness samples is larger by a
factor of nwd, and 400øLxø1200, which gave zsd
=2,WBCd=1.21s2d. Though this differs by 3.5 standard de-
viations from the value coming from FBC, it is just consis-
tent, at the margin, withzsd=2,PBCd=1.24s1d found above.

Direct examination of scaled PDFs results in the follow-
ing observations. First, in Fig. 6 one can see that the PDFs in

d=2 for FBC and WBC are unmistakably distinct. Further-
more, fits of FBC data to the analytical expressions derived
in Ref. f27g have been found to be generally of low quality.
As mentioned above, the best fit of FBC data is for thea
=2.96 curve, shown in the figure as a dashed line, and cor-
responds toxd.o.f.

2 .4310−3. Though this average deviation
is of the same order as that for the best case with PBCsrecall
Fig. 3d, comparison to Fig. 4 shows that, while for PBC
discrepancies are concentrated close to the narrow peaksthus
they can be at least partially ascribed to binning effectsd, here
one has a rather widespread disagreement in shape.

On the other hand, WBC data can be much more closely
fitted by the analytical expressions, as shown both in the
inset of Fig. 6, wherexd.o.f.

2 exhibits a minimum value.7
310−4 at a=3.85, and directly in the main figure, by the
superposition of thea=3.85 curve onto the corresponding
numerical data.

In summary, an analytical form derived from assuming an
interface whose Fourier representation has only cosinessi.e.
is horizontal at the edgesd has provided a very good fit to
numerical data generated by imposing WBC. Though this
appears contradictory, the same procedure has been success-
fully accomplished in Ref.f27g, with regard to both experi-
mental and simulational data.

Still, an important question remains, since the optimum
a=3.85s5d serror bars estimated as in Sec. IV Bd implies z
=1.43s3d via Eq. s6d. This is significantly distinct from all
three estimates thus far obtained ford=2, which average to
1.25s5d. We shall defer the discussion of this point to Sec. V.

Turning now tod=3, all poles ofGpssd have even degen-
eracy. A straightforward adaptation for FBC is as follows.
Recalling that the lattice sumsonunu−a which crop up in the
calculation ofkw2l f5,6,28g must be halved, this implies a
rescaling of the variables, so formally one can writef6g

Gfssd = ÎGps2sd. s8d

Fitting our d=3 FBC data to analytical distribution func-
tions, obtained with the help of Eq.s8d, turns out to give
similar results to thed=2 case. The above-quoted valuez
=0.89s1d, from the finite-size scaling ofkw2l, together with
Eq. s6d, would suggesta=3.78s2d. However,xd.o.f.

2 againsta
has a single minimums.10−3d at a=3.18s8d serror bars es-
timated as in Sec. IV Bd and increases monotonically, reach-
ing .2310−2 at a=3.78.

We again resorted to WBC. Imposing PBC at the edges of
a system withL3L cross section, we measured local rough-
ness within each ofnw nonoverlapping, adjacent, square win-
dows of linear dimensionL /Înw sor the largest integer con-
tained in itd. We tooknw=16, and initially measuredz from a
sequence of simulations withOs106d events, and 30øL
ø80, which gavezsd=3,WBCd=0.75s2d. The discrepancy
between this and the value 0.89s1d coming from FBC is
rather more severe than the corresponding case ford=2. On
the other hand, the present estimate is close to the values of
zsd=3,PBCd found above, namely 0.71s1d from Eq.s5d, and
0.76s3d from optimization of fits against 1/fa distributions
plus Eq.s6d.

FIG. 6. Scaled probability distributionFszd in d=2, for z de-
fined in Eq.s4d. Points are simulation data. Crosses:L=400, FBC,
53107 configurations. Squares:L=400, WBC, 107 avalanches,
nw=10 windows. Full line is roughness distribution for 1/fa noise
ssee Ref.f27gd, with a=3.85. Dashed line: roughness distribution
for a=2.96ssee textd. Inset:xd.o.f.

2 againsta, for fits of WBC simu-
lation data against 1/fa distributions, showing a minimum ata
=3.85.
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Again, we investigated the roughness PDFs generated
with WBC. Similarly to thed=2 case, they differ markedly
from the ones obtained with FBC, as shown in Fig. 7. This
time, fits against the analytical expressions given through Eq.
s8d exhibit a deep, well-defined minimum ofxd.o.f.

2 at a
=3.76s5d ssee the inset in the figured, in very good agreement
with a=3.78s2d predicted from finite-size scaling ofkw2l
data for FBC, together with Eq.s6d. However, for reasons to
be explained at length in Sec. V, we believe this coincidence
to be accidental.

D. MBC, d=3

We started by studying systems with a square cross sec-
tion, imposing PBC alongx and FBC, as defined at the be-
ginning of Sec. IV C, alongy.

Estimates of the exponentz of Eq. s5d were again ex-
tracted from power-law fits of simulational data withOs106d
events, and 30øLø80 for d=3 MBC, with the resultzsd
=3,MBCd=0.87s1d f10g.

The Fourier representation ofhstd with MBC can be put
in the form

hsx,yd = o
m,n

cmne
2pifmx+sn/2dyg/L, s9d

where m, n=0, ±1, ±2,…, sm,ndÞ s0,0d, and c−m,n=cm,n
* ;

cm,−n=cm,n. Thus a global rescaling such as that of Eq.s8d is
not possible. On the other hand, starting from Eq.s9d, an
analysis similar to that of Refs.f6,28g suggests a generating
function,

Gmssd = p
m,n

S1 +
s

s4m2 + n2da/2D−1/2

, s10d

again with sm,ndÞ s0,0d. The double sum om,ns4m2

+n2d−a/2, which appears in the subsequent expression for
kw2l, corresponds toQs1,0,4d of Ref. f26g and can be easily
evaluated.

We performed fits of simulational data to the closed-form
PDFs calculated as above. While Eq.s6d, with z=0.87s1d,
gives a=3.74s2d, xd.o.f

2 has a minimum.2310−3 at a
=3.36s10d. The overall quality of fits is slightly worse than
for d=3 FBC srefer to Fig. 7d.

In order to investigate WBC, we took rectangular systems
with dimensionsLx and Ly=4 Lx with full PBC fwe denote
this setup asmixed windowboundary conditionssMWBCdg
and calculated local roughness distributions withinnw=4
square windows ofLx3Lx sites each, side by side along the
y axis. Scaling of the first moment of the distribution, Eq.
s5d, with 30øLxø80, gavez=0.74s1d.

Again, the roughness PDF thus obtained was markedly
distinct from that with MBC. In addition, fits to the analyti-
cal expressions derived from Eq.s10d were considerably
worse than those of MBC data, with a minimumxd.o.f

2 .1
310−2 at a=4.1.

The results are displayed in Fig. 8, where it can be seen
that even the best-fitting analytical PDF fails to provide a
good match to the MWBC datasexcept for the initial, rather
steep, ascent close toz=0d.

V. DISCUSSION AND CONCLUSIONS

We begin our discussion by recalling from Ref.f10g and
Sec. IV B that, for the model considered here with PBC, the
finite-size scaling of the first moment of the distribution
gives zsd=2,PBCd=1.24s1d, zsd=3,PBCd=0.71s1d. Both
compare well with the usually accepted values for the
quenched Edwards-WilkinsonsEWd universality class
f11–14g, respectivelyz.1.25 sd=2d and z.0.75 sd=3d.
Furthermore, consideration of the full distributions points the
same way: our simulational data displayed in Figs. 4 and 5
match very well those in Fig. 2 of Ref.f22g which concern
the EW model. The agreement with EW behavior is consis-
tent with our results of Sec. IV A regarding the independence
of scaled roughness distributions on the demagnetizing term.
Indeed, the quenched EW equation can be written asf14g

FIG. 7. Scaled probability distributionFszd in d=3, for z de-
fined in Eq.s4d. Points are simulation data. Crosses:L=40, FBC,
53107 configurations. Squares:L=40, WBC, 33107 avalanches,
nw=16 windows. Lines are roughness distributions for 1/fa noise
fsee Eq.s8dg, with a=3.76 sfull d and 3.18sdashedd. Inset: xd.o.f.

2

againsta, for fits of WBC simulation data against 1/fa distribu-
tions, showing a minimum ata=3.76.

FIG. 8. Scaled probability distributionFszd in d=3, for z de-
fined in Eq. s4d. Crosses: simulation datasL=40, MBC, 53107

configurationsd. Squares: simulation datafLx=40, Lx=160, MWBC
ssee textd, 33106 avalanches,nw=4 windowsg. Lines are roughness
distributions for 1/fa noise fsee Eq.s10dg, with a=4.1 sfull d and
3.36 sdashedd. Inset: xd.o.f.

2 againsta, for fits of MBC simulation
data against 1/fa distributions, showing a minimum ata=3.36.
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]hsx,td
]t

= usx,hd + a=2hsxd + f , s11d

whereu represents quenched disorder andf is the external
driving force. This has a one-to-one correspondence with Eq.
s1d, except that in that equation we allowed for the self-
regulating, demagnetizing, term. Having shown that such a
mechanism is irrelevant as far as scaled roughness distribu-
tions are concerned, it becomes tenable to assume that, over-
all, our model belongs to the EW universality class.

Still for PBC, the connection between the exponentsa
andz, predictedf22g in Eq. s6d, is verified within reasonable
error bars.

Turning to different sets of boundary conditions, we first
point out that small differences in implementation of FBC
snamely, “literal” FBC, i.e., horizontal interface at the edges,
versus WBCd significantly alter the roughness PDFs. The
question then arises as to which, if any, of these implemen-
tations is the “right” one.

We investigate this by referring to results derived through
a “proven” method, i.e., finite-size scaling of the first mo-
ment of the distribution. Examination of the corresponding
column of Table I strongly suggests that, in bothd=2 and 3,
WBC sincluding WMBCd preserves universality with PBC,
while FBC does notsthough ind=2, FBC does not perform
very badlyd. Accepting such preservation as a basic tenet, we
conclude that FBC as implemented induces strong distortions
in the scaling behavior of interface roughness. In this con-
text, the good agreement ind=3 between the optimuma for
fits of WBC data to the analytical forms, and that coming
from finite-size scaling of FBC data via Eqs.s5d and s6d,
must be regarded as fortuitous.

Thus, we discard FBC, as well as MBC, for the remainder
of the present discussion. One must note, however, that use
of MBC si.e., partial FBCd provides a sensible representation
of the physical setup found in thin films, as well as repro-
ducing well-known resultssconcerning scaling behavior of
avalanche sizesd at both ends of the crossover betweend
=2 and 3f10g.

Returning to roughness scaling, we see in Table I that the
fair agreement betweenzFSS andzfit , found for PBC ind=2
and 3, is absent in the remaining cases under consideration,

i.e.,d=2 WBC,d=3 WBC, andd=3 MWBC. One might ask
whether finite-size effectssthough widely believed to vanish
already for small latticesf5,6,22,23gd still have a non-
negligible quantitative effect on the scaled roughness PDFs
found here, so as to distort our fits to the analytical distribu-
tions. We present data to show that this is not the case.

In Fig. 9, we compareL=40 andL=80 PDFs, ford=3
WBC. Contrary to the systematic trend exhibited in Fig. 1
sfor comparison betweenh=0 andÞ0 distributionsd, here
the differenceDFszd is rather small and essentially random,
arising because of fluctuations in statistics, coupled with bin-
ning effects. An apparently systematic effect shows up only
for the narrow range close toz=0 where both PDFs have a
steep slope. That, however, involves only of order 5–10
points, with a consequently reduced effect on the overall
statistics. The corresponding curvesxd.o.f.

2 against a are
nearly indistinguishable; withL=80 data, the minimum of
xd.o.f.

2 is 9310−5 at a=3.76s4d, virtually identical to theL
=40 result shown in Fig. 7ssee also Table Id. For d=2 WBC
andd=3 MWBC, the overall picture is the same. Therefore,
finite-size effects on the numerically obtained PDFs are not a
likely source for the disagreements found.

We note also that, when considering 1/fa distributions,
there is no apparent reason why Eq.s6d should not hold for
boundary conditions other than PBC, as that equation was
derived for generalized Gaussian distributionsf22g with the
only assumption being that the large-scale behavior is deter-
mined by a single observable.

We are thus left with a single point to analyze, namely the
overall adequacy of 1/fa distributions to describe the prob-
lem at hand. The following comments are in order.

sid Already for PBC, the study of generalized depinning
problems shows that small but systematic discrepancies re-
main between numerical data and 1/fa PDFs, whose origins
can be traced to higher cumulants of the correlation functions
f22g. Thus, in this sense the 1/fa distributions are not ex-
pected to be a perfect fit, even for PBC.

sii d In Ref. f27g, the equation of motion forhsxd contains
a long-range elastic term,edx1 fhsxd−hsx1dg / sx−x1d2, in-
stead of the local term,=2hsxd, present here. While in that
case an 1/fa distribution gives good fits to the numerically
generated roughness PDF with WBC, this does not necessar-

TABLE I. Estimates of roughness exponentz for different di-
mensionalities and boundary conditionssBCd. zFSS: finite-size scal-
ing of the first moment of distribution, Eq.s5d. zfit : from best-fitting
1/ fa distribution and Eq.s6d. xd.o.f.

2 smind: value ofxd.o.f.
2 for z=zfit .

zFSS zfit xd.o.f.
2 smind

d=2 PBC 1.24s1d 1.30s8d 6310−4

d=2 FBC 1.28s2d 0.98s7d 4310−3

d=2 WBC 1.21s2d 1.42s3d 7310−4

d=3 PBC 0.71s1d 0.76s3d 3310−4

d=3 FBC 0.89s1d 0.59s4d 1310−3

d=3 WBC 0.75s2d 0.88s1d 8310−5

d=3 MBC 0.87s1d 0.68s5d 2310−3

d=3 MWBC 0.74s1d 1.05s10d 1310−2

FIG. 9. sad Scaled probability distributionsFszd in d=3 with
WBC, for z defined in Eq.s4d. Squares:L=40. Full line:L=80. In
both cases, 106 avalanches,nw=16 windows.sbd Scaling function
difference againstz.
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ily imply that a similar quality of fit can be found for the
present EW problem with WBC. In this connection, one
might ask how far the independent Fourier mode assumption,
basic in the derivation of 1/fa PDFs, is affected by such
details. One sees that the long-range term contributes quali-
tatively in the same direction as PBC, i.e., by imposing ad-
ditional constraints on interface roughnessswhen compared,
respectively, to short-range interactions and WBCd.

A plausible scenario then emerges, in which the amplitude
of corrections to the representation of an interface roughness
PDF by an 1/fa distribution would depend on how much that
interface is constrained, either by boundary conditions or by
elastic terms in the equation of motion. Lessening of such
constraints would imply an increase in the correction ampli-

tudes. However, at present we do not see a way to quantify
and test these remarks.

Clearly, more work is needed in order to clarify the con-
nection between 1/fa distributions and generalized depin-
ning transitions.
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