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Search for universal roughness distributions in a critical interface model
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We study the probability distributions of interface roughness, sampled among successive equilibrium con-
figurations of a single-interface model used for the description of Barkhausen noise in disordered magnets, in
space dimensionalitied=2 and 3. The influence of a self-regulatifdgmagnetizationmechanism is investi-
gated, and evidence is given to show that it is irrelevant, which implies that the model belongs to the
Edwards-Wilkinson universality class. We attempt to fit our data to the class of roughness distributions asso-
ciated to 1f* noise. Periodic, free, “window,” and mixed boundary conditions are examined, with rather
distinct results as regards quality of fits tof Mistributions.
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I. INTRODUCTION induced across the coil. The integral of the voltage amplitude
) ] ) i ) . of a given pulse over time is proportional to the change in
This paper deals Wlth ﬂuctuat|on_ properties of driven IN-sample magnetization, thus giving a measure of the number
terfaces in random media. The subject has been the focus gf spins overturned in that particular event, or “avalanche
much current interesfor reviews see, e.g., Refs,2]). Spe-  gjze » Modern experimental techniques allow direct observa-
cial attention has been given to features at and close 10 thgy in ultrathin films, of the domain-wall motion character-
depinning transition, where a threshold is reached for thesiic of BN via the magneto-optical Kerr effef16,17.
external driving force, above which the interface starts mov- |+ has been proposed that BN is an illustration of “self-
ing at a finite speed._ _In _analogy with the Well-establlshedorganized criticality”[7,18-2Q, in the sense that a broad
scaling theory of equilibrium critical phenomena, one usu-gistripution of scalesi.e., avalanche sizgss found within a
ally searches for the underlying universality classes and the{fqe range of variation of the external parameter, namely the
respective critical |nd.|ces, wherever such concepts are applhpp”ed magnetic field, without any fine-tuning. Accordingly,
cable. One example is the roughness expodemtich char- e interface model studied here incorporates a self-
acterizes the disorder-averaged mean-square deviations Qfyylating mechanism in the form of a demagnetizing term
the interface about its mean height, at depinfiblf ~ (see below In the context of interface depinning models, the
_It has been shown very recently that the probability dis-gestion arises of whether this is a relevant perturbation, i.e.,
tribution functions(PDFg of critical fluctuations in seem- \\hather self-organized depinning phenomena belong to the

ingly disparate (both equilibrium and out-of-equilibrium  game unjversality class as their counterparts which do not
systems display a remarkable degree of universg8it]. In incorporate such mechanisms.

the context of depinning phenomena, this indicates that one | \what follows, we first recall pertinent aspects of the
may gain additional insight into the physical mechanismspterface model used here, and of our calculational methods,
involved, by investigating the full roughness PDFs instead obs \ye|| as the connections between roughness distributions
concentrating on their lowest-order moments. Here we invessnq 1 noise. Next. we exhibit numerical data for rough-
tigate the PDFs of interface roughness for a specific singleaess distributions, generated by our simulations. We examine
interface model which has been used in the description ofe influence of the self-regulating mechanism, and investi-
Barkhausen nois¢7-10], and is related to the quenched gate the effect of assorted boundary conditions, both on our
Edwards-Wilkinson universality clags1-14. Apreliminary  yegyits and on the class of ff/noise distributions to which

investigation of this problem was reported in RiO]. they are compared. Finally, we discuss our findings with re-
Barkhausen “noise{BN) is an intermittent phenomenon gard to the relevant universality classes.

which reflects the dynamics of domain-wall motion in the

central part of the hysteresis cycle in ferromagnetic materials

(see Ref[15] for an up-to-date review A sample placed in IIl. MODEL AND CALCULATIONAL METHOD

a time-varying external magnetic field undergoes sudden mi- Tpe single-interface model used here was introduced in
croscopic real_ignments of groups of magr_le_tic moments, paRef. [7] for the description of BN. We consider the adiabatic

allel to the field. For suitably slow driving rates, such jimit of a very slow driving rate, thus avalanches are consid-

domain-wall motions, or “avalanches,” are well separatecsreq to be instantaneodsccurring at a fixed value of the
and can be easily individualized. The accompanying changesyternal field.

of magnetic flux are usually detected by wrapping a coil  gjmulations are performed on dn XL, X% geometry,
around the sample and measuring the voltage pulses thygih the interface motion set along the infinite direction. The
interface at timet is described by its height,=h(x,y,t),
where(x,y) is the projection of siteé over the cross section.
*Electronic address: sldq@if.ufrj.br No overhangs are allowed, $0x,y,t) is single-valued. We
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consider mainlyL, =1 (system dimensionalitg=2, interface On account of the demagnetization term, the effective
dimensionalityd’=d-1=1), and L,=L, (d=3,d'=2). For field H, at first rises linearly with the applied field, and
reasons to be explained below, we will use the following setghen, upon further increase Hh, saturategapart from small
of boundary conditions: perioditPBC), so every site has fluctuations at a value rather close to the critical external
two neighbors ford=2 and four ford=3; free(FBC), mean- field for the corresponding modelithout demagnetization
ing that the interface is horizontal at the eddes/sn=0, [7,8]. The saturatioH, depends orR, k, and » (not notice-
wherefi=% or ¥ is the normal in the cross-section plagnend  ably onL,,L,) [8,10], and can be found from small-lattice
mixed (MBC), i.e., periodic along and free along. These  simulations. It takes #8-10° avalanches for a steady-state
latter were employed in Ref10] to reproduce the physical regime to be reached, as measured by the stabilizatidf of
picture of films with varying thickness. We also consideredagainstH.
an alternative implementation of FBC, namely window
boundary condition$WBC), to be described in Sec. IV C.

Each element of the interface experiences a force given 1. ROUGHNESS DISTRIBUTIONS AND 1/ f* NOISE

b . .
y We have generated histograms of occurrence of interface

roughness, to be examined in the context of universal fluc-

fi =uxy.h) + k; [hei) =i + He, @D tyation distributiongd3—6]. We have used only steady-state
data, i.e., after the stabilization &f, of Eq. (2) against ex-
where ternal field H. This is the regime in which the system is
self-regulated at the edge of criticality,8]. As the model is
He=H - 7M. (2)  supposed to mimic the data acquisition regime for BN, dur-

ing which the external field grows linearly in tinié—10,15,
The first term on the right-hand side of E() is chosen the value ofH is a measure of “time.”
randomly, for each lattice site= (x,y,h,), from a Gaussian At the end of each avalanche, we measured the roughness

distribution of zero mean and standard deviatiyrand rep- \t,l\‘/12e c()f ct)r;(iaticl)zs-:/net?;egduss Lr:f’:\?vcigtﬁ%?ﬂt%:r?rg't%r:f:égnﬁgs ht
resents quenched disorder. Large negative valuedeasdd to P 980sq 9

local interface pinning. The second terfwhere the force 6,22,

constantk is taken as the unit fof) corresponds to elastic LyLy -

nearest-neighbor couplingurface tension ¢,(i) is the po- Wo(t) = (LxLy)‘12 [h(t) = h() 2, 3)
i=1

sition of thejth nearest neighbor of siie For MBC, sites at
y=1 andy=L, have only three neighbors on thg plane
(except in the monolayer case,=1 which is the two-
dimensional limit, where all interface sites have two neigh-
borg. The last term is the effective driving force, resulting
from the applied uniform external field and a demagnetiz-
ing field which is taken to be proportional tdv

whereh(t) is the average interface height atAs the ava-
lanches progress, one gets a sampling of successive equilib-
rium configurations; the ensemble of such configurations
yields a distribution of the relative frequency of occurrence
of w,. Here we usually considered ensembles of B

o ) ) events(one and a half orders of magnitude larger than in Ref.
=(1/Lx|jy)EiL:Xiyhi’_ the magnetizatioriper sitg of the previ- [10]),8'(50 we ended up with rathergclean distgributions. This
ously flipped spins for a lattice of transverse akgh,. For a5 essential, in order to resolve ambiguities left over from
actual magnetic samples, the demagnetizing field is not neGyr previous result§10].

essarily uniform along the sample; even when itég., for The width distributions for correlated systems at critical-
a uniformly magnetized ellipsojd » would depend on the ity may be put into a scaling forf5,6,22,23
system’s aspect rati21]. Therefore, our approach amounts TR

to a simplification, which is nevertheless expected to capture D(2) = (W)P(Wy), Z=wWo/(Wy), (4)
the essential aspects of the probl¢f]. Here we useR
=5.0,k=1, and»=0.05, values for which fairly broad distri-

butions of avalanche sizes and roughness are obtain v th h th width. B
[8-10]. We also consider the effects of taking=0, i.e., the ence appears only througn the average $). By run-

non-self-organizing limit. ning simulations withO(10°) events, and 408 L,<1200

We start the simulation with a flat wall. Al spins above it for d=2(Ly=1), 30<L,=L,=<80 for d=3 [10], we ascer-
are unflipped. The forcé; is calculated for each unflipped tained that Eq(4) indeed holds, i.e., finite-size effects are
site along the interface, and each spin at a site Wita0  Not d_etectable in any significant way as _far as t_he scaling
flips, causing the interface to move up one step. The magnéunctlonSQJ(z) are concerned. The finite-size scaling of the
tization is updated, and this process continues, with as marffst moment gives the roughness exporier
sweeps of the whole lattice as necessary, until0 for all Wo(L)) ~ L% (5)
sites, when the interface comes to a halt. The external field is 2 '
then increased by the minimum amount needed to bring the In the context of critical fluctuation phenomena, it is
most weakly pinned element to motion. The avalanche siz&nown that boundary conditions have a nontrivial effect on
corresponds to the number of spins flipped between two corscaling functions, as infinite-range critical correlations are
secutive interface stops. sensitive to the boundaries of the systen®6,22,24,2h This

where angular brackets stand for averages over the ensemble
ng successive interface configurations, and the size depen-
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FIG. 1. (@) Scaled probability distribution®(z) in d=3 with FIG. 2. (a) Probability distributionsP(w,) in d=3 with MBC.

MBC, for z defined in Eq.(4). Data forL=40, 5x 10’ configura-  Data for L=40, 5x 107 configurations. Full line: demagnetization

tions. Full line: demagnetization factar=0.05; dashed liney=0. factor #=0.05; dashed liney=0. (b) Probability distribution dif-

(b) Scaling function difference against ference againstv,. Extent of horizontal axis corresponds to the
same interval o& variation in Fig. 1.

is the motivation for use of the assorted boundary conditions
defined in Sec. Il. origins of such an effect. This is done by direct inspection of
We have compared our results against the family ofthe unscaled PDFs. In Fig. 2 it is apparent that,#e0, the
roughness distributions for 1Y noise, described in Refs. high-end tail ofP(w,) is slightly fatter than forp+ 0, at the
[6,22]. As explained there, such distributions are derived unexpense of a small amount of depletion around the most
der the assumption that the Fourier modes into which th@yrobable value ofv,. Accordingly, the averag@w,) is higher
interface is decomposed are uncorreldgeheralized Gauss- by ~89% in the former case than in the latighe fractional
ian approximatior{22]), and with amplitudes such that the difference between averages is the same alsalfc? and
frequency dependence of the power spectrum is purel§ 1/ §=3 PBQ. Such a trend can be understood by recalling that
[6]. This is the simplest starting point from which one maythe ;=0 data have been collected justlowthe depinning
expect nontrivial resultsthe trivial ones corresponding to transition, i.e., still within the regime where pinning forces
the case in which theeal-space fluctuationare themselves  are dominant. Thus the interface mostly meanders about, in
uncorrelated, implyingr=1/2). order to comply with local energy minimization requests.
The complement of this picture is that, fel>H_, the inter-
face moves with finite speed, more or less ignoring local
IV. RESULTS randomness configurations, and becoming smoother the far-
A. Influence of the self-regulating term ther one is above the critical point. In short, for a given

first | . dwh Id be | dab h IIattice size the average interface roughness decreases mono-
We first investigated what could be learned about the rely;qica iy as the external fielddriving force is increased

evance of the self-regulating term, as regards roughness di§x,oss its critical value

tributions. In order to do so, we determined the approximate The interpretation of the small differences betwegn0
critical valueHg of the internal fielcH, of Eq. (2), by starting a4, 0 distributions is then as followsi) because of the

a simulation with## 0 and waiting forH, to stabilize. At 4y in which data for the former were collected here, they
that point, we sety=0 and repeatedly varied in the inter- - opresent a system just beldwy, for which interface rough-
val (xHg, Hg), x= 1, according to the procedure delineated inpocs is slightly larger than at the critical point; afiid the
Sec. Il. Though the interval of variation &f did affect the  |gseness ofy=0 data to those fom#0, and the way in
size distribution of avalanches, as this is what characterizeghich both sets of data differ, strongly suggest that behavior
the proximity of the depinning poirit7,8], no change was at the critical point of then=0 system is the same as that of
apparent in the roughness data when comparing results, e.¢gse n#0 (self-regulatell case. We conclude that the self-

for x=0.95 andx=0.9. For the simulations described in the yeqylating term is irrelevant, as far as critical roughness dis-
remainder of this subsection, we used the latter value. In aliputions are concerned.

cases studied, namelgi=2 PBC andd=3 with both MBC

and PBC, the influence of the demagnetization term on the

roughness PDFs is rather small, but systematic. This is illus- B. PBC,d=2 and 3

trated in Fig. 1 ford=3 with MBC, the case for which the

deviations between th@+ 0 and »=0 sets of data are the  Analytical expressions for the 19 distributions with
largest in magnitude. One sees that neglecting the demagnBBC are either given in Ref6] (d=2), or can be derived
tizing term causes a small leftward shift of the scaling curvestraightforwardly from Refd.6,22] (d=3). In the latter case,
As we will see in Sec. IV B, the changes it causes to the fitgshe use of exact identities for two-dimensional lattice sums
of our distributions to the analytical 11 curves are of the [26] speeds up calculations considerably. Estimates of the
order of systematic imprecisions characteristic of the fittingexponent{ of Eq. (5), from power-law fits of simulational
procedure. Nevertheless, it is instructive to seek the physicalata with O(1(f) events, and 408 L,<1200 ford=2, 30
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FIG. 3. x? per degree of freedorty? , ;) for fits of simulation
data with PBC to analytical forms of 19 distributions, against.
Triangles:d=2L,=400; squaresj=3,L=40.

FIG. 4. Scaled probability distributiof®(z) in d=2 (PBC), for z
defined in Eq(4), from 5x 10’ configurations. Squares: simulation
data (L=400. Full line is roughness distribution for 19 noise
given in Ref.[6], with «=3.60.
<L=<80 for d=3, give ((d=2,PBO=1.241), ¢
:3’PBQ_:O-7_](1) [10]. _ _ _ ~side of Eg.(1)] from their ghost neighbors outside the

Consideration of the scaling properties of he|ght-he|ghtsamp|e_
correlation functions and their Fourier transforms then sug-  gimilarly to the PBC cases, estimates of the expogesit
gests[22], for the generalized Gaussian case of independertq (5) were extracted from power-law fits of simulational

Fourier modes, that data with O(10°) events, and 408 L,=<1000 ford=2, 30
a=d + 20 (d'=d- 1)’ (6) <L <80 for d=3. The rgsults arq"(d=2,FBC)=12€{2),
_ ) {(d=3,FBO=0.891). While the former value might be
which would imply @=3.482) (d=2), 3.422) (d=3). construed as not inconsistent with PBC and FBC giving the

Such predictions can be quantitatively checked by estisame universality class fod=2, the same picture cannot
mating the values of? per degree of freedorf)d () from  hold ford=3. Though it is knowri5,6,22,24,2kthat bound-
fits of our simulation results to the analytical distributions. ary conditions do have significant influence sealing func-
Since, even with &% 10’ samples, the simulational data even- tions of critical systems, they are not generally expected to
tually get frayed at the top end, given the long forward tailschange the values of criticaixponents
characteristic of all systems studied here, our fits used only |n order to discuss the roughness PDFs, we first recall the
data for which®(z) =103, This turned out not to be a dras- effect of FBC on 11 distributions. The generating function
tic restriction, as we were left typically with at least 100-200G(s) = fdw,P(w,)e "2 has the general form for PB[®,22,
points to fit in each case. Assuming the uncertainty in the 1o
value of « that best fits our data to be given by requiring that G.(s) = H (1 +i> )
X0 Stay within 150% of its minimum, we quote from the P N0 n® ’
data shown in Fig. 3¢=3.6Q013) (d=2); 3.526) (d=3). The . _ _ . _ o
agreement with the above predictions is satisfactory, thougheren is a lattice vector ind—1 dimensions with integer
slight discrepancies remain. A visual check of the goodnesstoordinates. Because allare counted, the square root dis-

of-fit for each case is given in F|gs 4 and 5. appears due to thmt |eaSI twofold degeneracy. Requiring
Fitting »=0 data to the closed-form distributions pro-
duces curves whose minima gf , ; are essentially the same l2 g

as in Fig. 3, and slightly shifted rightwards. Using the same

criteria as above for the estimation of error bars, we have, for L

7=0, =3.6416) (d=2); 3.595) (d=3). 0.8
Detailed discussion, and pertinent comparisons with data e
from Ref.[22], will be deferred to Sec. V. 5 0.6

0.4
C. FBC and WBC, d=2 and 3

We have generated roughness data in loiet and 3 with

FBC. Our initial implementation of FBC, used also in Ref. 0
[10], aims at a literal reproduction of the constraint that the 0 1 2 3
interface must be horizontal at the edges. Thus, e.g.dfor
=2, “ghost” sites are added &t 0, x=L,+1, whose heights FIG. 5. Scaled probability distributio®(z) in d=3 with PBC,
are always adjusted to be, respectivéif),t)=h(1,t), h(Ly  for z defined in Eq(4), from 5x 107 configurations. Squares: simu-
+1,t)=h(Ly,t). This way, the edge sites a£ 1 andL, expe- |ation data(L=40). Full line is roughness distribution for 19
rience no elastic pullsee the second term on the right-handnoise, witha=3.52.

0.2
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FIG. 6. Scaled probability distributio®(z) in d=2, for z de-
fined in Eq.(4). Points are simulation data. Crossks:400, FBC,
5x 10" configurations. Squared:=400, WBC, 16 avalanches,
n,,=10 windows. Full line is roughness distribution forft/noise
(see Ref[27]), with «=3.85. Dashed line: roughness distribution
for «=2.96(see text Inset:x3 . ; againsta, for fits of WBC simu-
lation data against I distributions, showing a minimum at
=3.85.
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d=2 for FBC and WBC are unmistakably distinct. Further-
more, fits of FBC data to the analytical expressions derived
in Ref.[27] have been found to be generally of low quality.
As mentioned above, the best fit of FBC data is for the
=2.96 curve, shown in the figure as a dashed line, and cor-
responds toy3 . =4x 103, Though this average deviation
is of the same order as that for the best case with RBEall

Fig. 3), comparison to Fig. 4 shows that, while for PBC
discrepancies are concentrated close to the narrow (pleak
they can be at least partially ascribed to binning effettsre
one has a rather widespread disagreement in shape.

On the other hand, WBC data can be much more closely
fitted by the analytical expressions, as shown both in the
inset of Fig. 6, whereyj,; exhibits a minimum value=7
X 10% at «=3.85, and directly in the main figure, by the
superposition of thex=3.85 curve onto the corresponding
numerical data.

In summary, an analytical form derived from assuming an
interface whose Fourier representation has only cogines
is horizontal at the edggdas provided a very good fit to
numerical data generated by imposing WBC. Though this
appears contradictory, the same procedure has been success-

that the interface be horizontal at the edges implies that thg|ly accomplished in Ref[27], with regard to both experi-

Fourier representation ¢it) includes only cosines. The cor-

respondingG;(s) has the degeneracy of its singularities cut

in half, compared to PBC.

mental and simulational data.
Still, an important question remains, since the optimum
a=3.855) (error bars estimated as in Sec. |V Bnplies ¢

In d=2, this means that the single poles found for PBC=1 433) via Eq. (6). This is significantly distinct from all

turn into square-root singularities. Evaluation Bfw,), as

three estimates thus far obtained tbr2, which average to

the inverse Laplace transform @(s), thus necessitates a 1 255). \We shall defer the discussion of this point to Sec. V.
direct approach, since the residue theorem is inapplicable. Turning now tod=3, all poles ofG,(s) have even degen-

This has been accomplished in RE27], from which the
relevant expressions were extracted in order to attempt
minimization of 3 , ; againsta, similar to that of Sec. IV B.

eracy. A straightforward adaptation for FBC is as follows.
Recalling that the lattice sunis,|n|~® which crop up in the
calculation of{(w,) [5,6,28 must be halved, this implies a

With {(d=2,FBQ as above, one would expect a good fit for rescaling of the variabls, so formally one can writé6]

a=3.5-3.6. Instead,x3,; has a minimum value=4

X102 at «=2.96, and increases monotonically to reach

=4x 10 at «=3.5. This is clearly at variance with corre-
spondings results for the PBC case.

Gy(5) = \Gy(25). (8)

We then decided to generate data using window boundarfitting our d=3 FBC data to analytical distribution func-
conditions(WBC) [6,27)], which are generally accepted as antions, obtained with the help of Eg8), turns out to give

alternative way to simulate free edges. Accordinglydin?2

we imposed global PBC on a system of overall lenggh
and measured the local roughness within each,cidjacent
windows of lengthL,/n,,. With n,>1, it is plausible to as-

similar results to thed=2 case. The above-quoted valtie
=0.891), from the finite-size scaling ofw,), together with
Eq. (6), would suggestr=3.782). However,x3 , ; againsta

has a single minimuni=10"3) at «=3.188) (error bars es-

sume that the resulting PDFs are independent of the boundimated as in Sec. IV Band increases monotonically, reach-

ary conditions established at0, L,. In order to guarantee

ing =2x 1072 at «=3.78.

statistical independence, one should in principle use widely We again resorted to WBC. Imposing PBC at the edges of
separated windows. However, the use of nonoverlapping, but system withL X L cross section, we measured local rough-
neighboring, windows instead appears to introduce no meazess within each af,, nonoverlapping, adjacent, square win-

surable errors on the resulting PDF8. We fixed n,,=10,
and initially measured, via Eq. (5), from a sequence of
simulations withO(10%) events(i.e., individual avalanches,
thus the total number of roughness samples is larger by
factor of n,), and 406<L,<1200, which gave {(d
=2,WBC)=1.21(2). Though this differs by 3.5 standard de-

viations from the value coming from FBC, it is just consis-

tent, at the margin, witlf(d=2,PBQ=1.241) found above.

dows of linear dimensiom./n,, (or the largest integer con-
tained in ij. We tookn,,= 16, and initially measuredifrom a
sequence of simulations witD(10°) events, and 3&L

& 80, which gave/(d=3,WBC)=0.752). The discrepancy
between this and the value 0(89 coming from FBC is
rather more severe than the corresponding casd=£@. On

the other hand, the present estimate is close to the values of
{(d=3,PBQ found above, namely 0.71) from Eg.(5), and

Direct examination of scaled PDFs results in the follow-0.763) from optimization of fits against X# distributions
ing observations. First, in Fig. 6 one can see that the PDFs iplus Eq.(6).
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FIG. 7. Scaled probability distributio®(z) in d=3, for z de- FIG. 8. Scaled probability distributio®(z) in d=3, for z de-

fined in Eq.(4). Points are simulation data. Crosses:40, FBC, ~ fined in Eq.(4). Crosses: simulation datd =40, MBC, 5x 10
5% 107 configurations. Squaret:=40, WBC, 3x 10 avalanches, configurationg Squares: simulation _da{ax:40., L,=160, MWBC
n,=16 windows. Lines are roughness distributions fof?loise  (See text 3x 10° avalanchesy, =4 windows. Lines are roughness
[see Eq.(8)], with «=3.76 (full) and 3.18(dashedl Inset: y3,,  distributions for 1f* noise[see Eq.(10)], with a=4.1 (full) and

. 2 . . . .
againsta, for fits of WBC simulation data against i/ distribu- ~ 3.36 (dashedl Inset: x;; ¢ againsta, for fits of MBC simulation
tions, showing a minimum at=3.76. data against 1fF* distributions, showing a minimum ai=3.36.

Again, we investigated the roughness PDFs generated e performed fits of simulational data to the closed-form
with WBC. Similarly to thed=2 case, they differ markedly PDFs calculated as above. While @), with {=0.871),
from the ones obtained with FBC, as shown in Fig. 7. Thisdives a=3.742), x3,: has a minimum=2x10"° at a
time, fits against the analytical expressions given through Eq3.3610). The overall quality of fits is slightly worse than
(8) exhibit a deep, well-defined minimum of3,; at « for d=3 FBC (refer to Fig. 7.
=3.765) (see the inset in the figuran very good agreement In order to investigate WBC, we took rectangular systems
with «=3.782) predicted from finite-size scaling dfw,) ~ With dimensionsL, andLy=4 L, with full PBC [we denote
data for FBC, together with E6). However, for reasons to this setup asnixed windowboundary condition¢MWBC)]

be explained at length in Sec. V, we believe this coincidenc&nd calculated local roughness distributions withig= 4
to be accidental. square windows ok, X L, sites each, side by side along the

y axis. Scaling of the first moment of the distribution, Eq.
(5), with 30=<L, <80, gave/=0.741).
Again, the roughness PDF thus obtained was markedly
We started by studying systems with a square cross sedelistinct from that with MBC. In addition, fits to the analyti-
tion, imposing PBC along and FBC, as defined at the be- cal expressions derived from E@10) were considerably

D. MBC, d=3

ginning of Sec. IV C, alony. worse than those of MBC data, with a minimugg, ;=1

Estimates of the exponerdt of Eq. (5) were again ex- X102 ata=4.1.
tracted from power-law fits of simulational data witi{1P) The results are displayed in Fig. 8, where it can be seen
events, and 3&L <80 for d=3 MBC, with the result{(d  that even the best-fitting analytical PDF fails to provide a
=3,MBC)=0.871) [10]. good match to the MWBC dat@xcept for the initial, rather

The Fourier representation oft) with MBC can be put steep, ascent close nx0).
in the form

h(x,y) = E Cmne277i[mx-|-(n/2)y]/|_, (9) V. DISCUSSION AND CONCLUSIONS
m,n

We begin our discussion by recalling from REZ0] and
wherem, n=0,+1,+2,..., (m,n)#(0,0), andc_,=cC,,; S€c. IV Bthat, for the model considered here with PBC, the
Cin-n=Cmn. Thus a global rescaling such as that of EBJ-YiS finite-size scaling of the first moment of the distribution
not possible. On the other hand, starting from E®), an  9ives {(d=2,PBO=1.241), {(d=3,PBQ=0.711). Both
analysis similar to that of Ref§6,28] suggests a generating compare well with the usually accepted values for the

function, quenched Edwards-Wilkinson(EW) universality class
i [11-14, respectively(=1.25 (d=2) and {=0.75 (d=3).
G.(9=1] (1 . S ) (10) Furthermore, consideration of the full distributions points the
o (4m? +n?«2) same way: our simulational data displayed in Figs. 4 and 5

match very well those in Fig. 2 of Reff22] which concern
again with (m,n)#(0,0. The double sumZ,,(4n"  the EW model. The agreement with EW behavior is consis-
+n?)~*'2, which appears in the subsequent expression fotent with our results of Sec. IV A regarding the independence
(w,), corresponds tQ(1,0,4 of Ref.[26] and can be easily of scaled roughness distributions on the demagnetizing term.
evaluated. Indeed, the quenched EW equation can be writtefiLdb
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TA.BLE.I.. Estimates of roughnggs exponejﬂqr .diffelrent di- 1 i_' PR ‘d':' 'W'B'C'_i
mensionalities and boundary conditiof®C). ;7SS finite-size scal- —~ 08 EF =
ing of the first moment of distribution, E¢5). ;;: from best-fitting S o6 f o L=40 =
1/f« distribution and Eq(6). x3 , ((min): value of x3 , ; for £= ¢ < 83 3 L=80 3
{ss Giit Xg.o.f.(min) = 0.0(1) i_ E
d=2 PBC 1.241) 1.308) 6x 107 s Oc 3
d=2 FBC 1.282) 0.947) 4% 1073 < =0.01 Hin| @ _g— 40 (b)3
d=2 WBC 1.212) 1.423) 7x10% —~8E Ef ) 1) e sailmyy e
d=3 PBC 0.710) 0.76(3) 3x10* 0 1 2 3
d=3 FBC 0.891) 0.594) 1x10°3 ’
d=3 WBC 0.7%2) 0.891) 8x 10°° FIG. 9. (a) Scaled probability distribution®(z) in d=3 with
d=3 MBC 0.811) 0.645) 2% 1073 WBC, for z defined in Eq(4). SquaresL=40. Full line:L=80. In

both cases, foavalanchesp,,=16 windows.(b) Scaling function

— 2
d=3 MWBC 0.741) 1.0510) 1X10° difference against.

i.e.,d=2 WBC,d=3 WBC, andd=3 MWBC. One might ask
=u(x,h) +av?h(x) + f, (11)  whether finite-size effect@hough widely believed to vanish

already for small latticed5,6,22,23) still have a non-
whereu represents quenched disorder ani$ the external negligible quantitative effect on the scaled roughness PDFs
driving force. This has a one-to-one correspondence with E pund here, so as to distort our fits to t_he_ analytical distribu-
(1), except that in that equation we allowed for the self-tons. We present data to show that this is not the case.
regulating, demagnetizing, term. Having shown that such a N Fig. 9, we comparé. =40 andL=80 PDFs, ford=3
mechanism is irrelevant as far as scaled roughness distribf/BC. Contrary to the systematic trend exhibited in Fig. 1

tions are concerned, it becomes tenable to assume that, ovéfor comparison betweem=0 and #0 distributions, here
all, our model belongs to the EW universality class. the differenceA®d(z) is rather small and essentially random,

Still for PBC, the connection between the exponeats arising because of fluctuations in statistics, coupled with bin-
and¢, predicted 22] in Eq. (6), is verified within reasonable Ning effects. An apparently systematic effect shows up only
error bars. for the narrow range close to=0 where both PDFs have a

Turning to different sets of boundary conditions, we firstSteep slope. That, however, involves only of order 5-10
point out that small differences in implementation of FBC Points, with a consequently reduced effect on the overall
(namely, “literal” FBC, i.e., horizontal interface at the edges,Statistics. The corresponding curveg ., againsta are
versus WBG significantly alter the roughness PDFs. The hearly |nd|st|n%U|shabIe; with. =80 data, the minimum of
guestion then arises as to which, if any, of these implemenXa.os. is 9X 107 at @=3.764), virtually identical to theL
tations is the “right” one. =40 result shown in Fig. Tsee also Table)l Ford=2 WBC

We investigate this by referring to results derived throughandd=3 MWBC, the overall picture is the same. Therefore,
a “proven” method, i.e., finite-size scaling of the first mo- finite-size effects on the numerically obtained PDFs are not a
ment of the distribution. Examination of the correspondinglikely source for the disagreements found.
column of Table I strongly suggests that, in both2 and 3, We note also that, when consideringfi /distributions,
WBC (including WMBC) preserves universality with PBC, there is no apparent reason why K@) should not hold for
while FBC does nofthough ind=2, FBC does not perform boundary conditions other than PBC, as that equation was
very badly. Accepting such preservation as a basic tenet, wélerived for generalized Gaussian distributi¢@8] with the
conclude that FBC as implemented induces strong distortion@nly assumption being that the large-scale behavior is deter-
in the scaling behavior of interface roughness. In this conmined by a single observable.

dh(x,t)

text, the good agreement i3 between the optimura for We are thus left with a single point to analyze, namely the
fits of WBC data to the analytical forms, and that comingoverall adequacy of ¥f distributions to describe the prob-
from finite-size scaling of FBC data via Eq&) and (6), lem at hand. The following comments are in order.

must be regarded as fortuitous. (i) Already for PBC, the study of generalized depinning

Thus, we discard FBC, as well as MBC, for the remainderoblems shows that small but systematic discrepancies re-
of the present discussion. One must note, however, that uggain between numerical data andf1 PDFs, whose origins
of MBC (i.e., partial FBQ provides a sensible representation can be traced to higher cumulants of the correlation functions
of the physical setup found in thin films, as well as repro-[22]. Thus, in this sense the 7 distributions are not ex-
ducing well-known resultgconcerning scaling behavior of pected to be a perfect fit, even for PBC.
avalanche sizesat both ends of the crossover betwegn (i) In Ref.[27], the equation of motion fon(x) contains
=2 and 3[10]. a long-range elastic termf{dx, [h(x)—h(x;)]/(Xx=%;)?, in-
Returning to roughness scaling, we see in Table | that thetead of the local termy2h(x), present here. While in that
fair agreement betweefTSSand /i, found for PBC ind=2  case an 1f¢ distribution gives good fits to the numerically
and 3, is absent in the remaining cases under consideratiogenerated roughness PDF with WBC, this does not necessar-
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ily imply that a similar quality of fit can be found for the tudes. However, at present we do not see a way to quantify
present EW problem with WBC. In this connection, oneand test these remarks.
might ask how far the independent Fourier mode assumption, Clearly, more work is needed in order to clarify the con-
basic in the derivation of I PDFs, is affected by such nection between Xf* distributions and generalized depin-
details. One sees that the long-range term contributes quafing transitions.
tatively in the same direction as PBC, i.e., by imposing ad-
ditional constraints on interface roughnésgen compared,
respectively, to short-range interactions and WBC The author thanks Tibor Antal and Zoltan Récz for their
Aplausible scenario then emerges, in which the amplitud@dvice on numerical evaluation of the closed-form PDFs, as
of corrections to the representation of an interface roughnesgell as Robin Stinchcombe and J. A. Castro for interesting
PDF by an 1{* distribution would depend on how much that discussions and suggestions. This research was partially sup-
interface is constrained, either by boundary conditions or byorted by the Brazilian agencies CNRgrant No. 30.0003/
elastic terms in the equation of motion. Lessening of suct2003-0, FAPERJ (Grant No. E26-152.195/2002 FUJB-
constraints would imply an increase in the correction ampli-UFRJ, and Instituto do Milénio de Nanociéncias—CNPq.
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